Molecular Detection of Avian Pathogenic Escherichia coli (APEC) for the First Time in Layer Farms in Bangladesh and Their Antibiotic Resistance Patterns

Avian pathogenic Escherichia coli (APEC) causes significant economic losses in poultry industries. Here, we determined for the first time in Bangladesh, the prevalence of APEC-associated virulence genes in E. coli isolated from layer farms and their antibiotic resistance patterns. A total of 99 samp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Microorganisms (Basel) 2020-07, Vol.8 (7), p.1021
Hauptverfasser: Ievy, Samina, Islam, Md. Saiful, Sobur, Md. Abdus, Talukder, Mithun, Rahman, Md. Bahanur, Khan, Mohammad Ferdousur Rahman, Rahman, Md. Tanvir
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Avian pathogenic Escherichia coli (APEC) causes significant economic losses in poultry industries. Here, we determined for the first time in Bangladesh, the prevalence of APEC-associated virulence genes in E. coli isolated from layer farms and their antibiotic resistance patterns. A total of 99 samples comprising internal organs, feces, and air were collected from 32 layer farms. Isolation was performed by culturing samples on eosin–methylene blue agar plates, while the molecular detection of APEC was performed by PCR, and antibiograms were performed by disk diffusion. Among the samples, 36 were positive for the APEC-associated virulence genes fimC, iucD, and papC. Out of 36 isolates, 7, 18, and 11 were positive, respectively, for three virulence genes (papC, fimC, and iucD), two virulence genes, and a single virulence gene. Although the detection of virulence genes was significantly higher in the internal organs, the air and feces were also positive. The antibiograms revealed that all the isolates (100%) were resistant to ampicillin and tetracycline; 97.2%, to chloramphenicol and erythromycin; 55.5%, to enrofloxacin; 50.0%, to norfloxacin and ciprofloxacin; 19.4%, to streptomycin; 11.1%, to colistin; and 8.33%, to gentamicin. Interestingly, all the isolates were multidrug-resistant (MDR). Spearman’s rank correlation coefficient analysis revealed the strongest significant correlation between norfloxacin and ciprofloxacin resistance. This is the first study in Bangladesh describing the molecular detection of APEC in layer farms. Isolated APEC can now be used for detailed genetic characterization and assessing the impact on public health.
ISSN:2076-2607
2076-2607
DOI:10.3390/microorganisms8071021