Fast automated detection of COVID-19 from medical images using convolutional neural networks

Coronavirus disease 2019 (COVID-19) is a global pandemic posing significant health risks. The diagnostic test sensitivity of COVID-19 is limited due to irregularities in specimen handling. We propose a deep learning framework that identifies COVID-19 from medical images as an auxiliary testing metho...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications biology 2021-01, Vol.4 (1), p.35-35, Article 35
Hauptverfasser: Liang, Shuang, Liu, Huixiang, Gu, Yu, Guo, Xiuhua, Li, Hongjun, Li, Li, Wu, Zhiyuan, Liu, Mengyang, Tao, Lixin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Coronavirus disease 2019 (COVID-19) is a global pandemic posing significant health risks. The diagnostic test sensitivity of COVID-19 is limited due to irregularities in specimen handling. We propose a deep learning framework that identifies COVID-19 from medical images as an auxiliary testing method to improve diagnostic sensitivity. We use pseudo-coloring methods and a platform for annotating X-ray and computed tomography images to train the convolutional neural network, which achieves a performance similar to that of experts and provides high scores for multiple statistical indices (F1 scores > 96.72% (0.9307, 0.9890) and specificity >99.33% (0.9792, 1.0000)). Heatmaps are used to visualize the salient features extracted by the neural network. The neural network-based regression provides strong correlations between the lesion areas in the images and five clinical indicators, resulting in high accuracy of the classification framework. The proposed method represents a potential computer-aided diagnosis method for COVID-19 in clinical practice. Liang, Gu and other colleagues develop a convoluted neural network (CNN)-based framework to diagnose COVID-19 infection from chest X-ray and computed tomography images, and comparison with other upper respiratory infections. Compared to expert evaluation of the images, the neural network achieved upwards of 99% specificity, showing promise for the automated detection of COVID-19 infection in clinical settings.
ISSN:2399-3642
2399-3642
DOI:10.1038/s42003-020-01535-7