Prediction of ultra-short-term wind power based on CEEMDAN-LSTM-TCN

So as to decrease those cacoethic impact of a huge amount of wind energy generation systems associated with the electric power system and improve the utilization rate and the budgetary profits of wind power era, this paper raises a neural network in view of CEEMDAN-LSTM-TCN. Firstly, CEEMDAN is used...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy reports 2022-11, Vol.8, p.483-492
Hauptverfasser: Hu, Chenjia, Zhao, Yan, Jiang, He, Jiang, Mingkun, You, Fucai, Liu, Qian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:So as to decrease those cacoethic impact of a huge amount of wind energy generation systems associated with the electric power system and improve the utilization rate and the budgetary profits of wind power era, this paper raises a neural network in view of CEEMDAN-LSTM-TCN. Firstly, CEEMDAN is used to break down the wind velocity arrangement to decrease the sway of arbitrariness Furthermore variance about wind velocity. Secondly, the ultra-short-term wind power forecast depend upon LSTM and TCN is built to realize the real-time prediction for wind energy. Finally, the simulation results show that LSTM-TCN can deal with multi time order characteristics and predict ultra-short period wind energy with effect, which is better than LSTM and TCN. It also has a scientific reference for local power dispatching.
ISSN:2352-4847
2352-4847
DOI:10.1016/j.egyr.2022.09.171