The Smallest Non-Autograph

Suppose that G is a simple, vertex-labeled graph and that S is a multiset. Then if there exists a one-to-one mapping between the elements of S and the vertices of G, such that edges in G exist if and only if the absolute difference of the corresponding vertex labels exist in S, then G is an autograp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Discussiones Mathematicae. Graph Theory 2016-01, Vol.36 (3), p.577-602
Hauptverfasser: Baumer, Benjamin S., Wei, Yijin, Bloom, Gary S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Suppose that G is a simple, vertex-labeled graph and that S is a multiset. Then if there exists a one-to-one mapping between the elements of S and the vertices of G, such that edges in G exist if and only if the absolute difference of the corresponding vertex labels exist in S, then G is an autograph, and S is a signature for G. While it is known that many common families of graphs are autographs, and that infinitely many graphs are not autographs, a non-autograph has never been exhibited. In this paper, we identify the smallest non-autograph: a graph with 6 vertices and 11 edges. Furthermore, we demonstrate that the infinite family of graphs on n vertices consisting of the complement of two non-intersecting cycles contains only non-autographs for n ≥ 8.
ISSN:1234-3099
2083-5892
DOI:10.7151/dmgt.1881