Machine Learning Techniques Applied to Predict Tropospheric Ozone in a Semi-Arid Climate Region

In the last decade, ground-level ozone exposure has led to a significant increase in environmental and health risks. Thus, it is essential to measure and monitor atmospheric ozone concentration levels. Specifically, recent improvements in machine learning (ML) processes, based on statistical modelin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematics (Basel) 2021-11, Vol.9 (22), p.2901, Article 2901
Hauptverfasser: Bhuiyan, Md Al Masum, Sahi, Ramanjit K., Islam, Md Romyull, Mahmud, Suhail
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In the last decade, ground-level ozone exposure has led to a significant increase in environmental and health risks. Thus, it is essential to measure and monitor atmospheric ozone concentration levels. Specifically, recent improvements in machine learning (ML) processes, based on statistical modeling, have provided a better approach to solving these risks. In this study, we compare Naive Bayes, K-Nearest Neighbors, Decision Tree, Stochastic Gradient Descent, and Extreme Gradient Boosting (XGBoost) algorithms and their ensemble technique to classify ground-level ozone concentration in the El Paso-Juarez area. As El Paso-Juarez is a non-attainment city, the concentrations of several air pollutants and meteorological parameters were analyzed. We found that the ensemble (soft voting classifier) of algorithms used in this paper provide high classification accuracy (94.55%) for the ozone dataset. Furthermore, variables that are highly responsible for the high ozone concentration such as Nitrogen Oxide (NOx), Wind Speed and Gust, and Solar radiation have been discovered.
ISSN:2227-7390
2227-7390
DOI:10.3390/math9222901