RAP-MAC: A Robust and Adaptive Pipeline MAC Protocol for Underwater Acoustic String Networks
The development of underwater acoustic networks is a significant expansion of Internet-of-Things technology to underwater environments. These networks are essential for a variety of marine applications. For many practical uses, it is more efficient to collect marine data from a remote location over...
Gespeichert in:
Veröffentlicht in: | Remote sensing (Basel, Switzerland) Switzerland), 2024-06, Vol.16 (12), p.2195 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The development of underwater acoustic networks is a significant expansion of Internet-of-Things technology to underwater environments. These networks are essential for a variety of marine applications. For many practical uses, it is more efficient to collect marine data from a remote location over multiple hops, rather than direct point-to-point communications. In this article, we will focus on the underwater acoustic string network (UA-SN) designed for this type of application. We propose a Robust and Adaptive Pipeline Medium Access Control (RAP-MAC) protocol to enhance the network’s transmission efficiency, adaptability, and robustness. The protocol includes a scheduling-based concurrent algorithm, online real-time configuration adjustment function, a rate mode adaptive algorithm, and a fault recovery algorithm. We conducted simulations to compare the new protocol with another representative protocol, validating the RAP-MAC protocol’s adaptability and fault recovery ability. Additionally, we carried out two large-scale sea trials. The results of these experiments indicate that the RAP-MAC protocol ensures effectiveness and reliability in large-scale multihop UA-SNs. In the South China Sea, we were able to achieve a communication distance of 87 km with a throughput of 601.6 bps, exceeding the recognized upper bound of underwater acoustic communication experiment performance by 40 km·kbps. |
---|---|
ISSN: | 2072-4292 |
DOI: | 10.3390/rs16122195 |