Feature-specific prediction errors and surprise across macaque fronto-striatal circuits

To adjust expectations efficiently, prediction errors need to be associated with the precise features that gave rise to the unexpected outcome, but this credit assignment may be problematic if stimuli differ on multiple dimensions and it is ambiguous which feature dimension caused the outcome. Here,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2019-01, Vol.10 (1), p.176-176, Article 176
Hauptverfasser: Oemisch, Mariann, Westendorff, Stephanie, Azimi, Marzyeh, Hassani, Seyed Alireza, Ardid, Salva, Tiesinga, Paul, Womelsdorf, Thilo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:To adjust expectations efficiently, prediction errors need to be associated with the precise features that gave rise to the unexpected outcome, but this credit assignment may be problematic if stimuli differ on multiple dimensions and it is ambiguous which feature dimension caused the outcome. Here, we report a potential solution: neurons in four recorded areas of the anterior fronto-striatal networks encode prediction errors that are specific to feature values of different dimensions of attended multidimensional stimuli. The most ubiquitous prediction error occurred for the reward-relevant dimension. Feature-specific prediction error signals a) emerge on average shortly after non-specific prediction error signals, b) arise earliest in the anterior cingulate cortex and later in dorsolateral prefrontal cortex, caudate and ventral striatum, and c) contribute to feature-based stimulus selection after learning. Thus, a widely-distributed feature-specific eligibility trace may be used to update synaptic weights for improved feature-based attention. In order to adjust expectations efficiently, prediction errors need to be associated with the features that gave rise to the unexpected outcome. Here, the authors show that neurons in anterior fronto-striatal networks encode prediction errors that are specific to feature values of different stimulus dimensions.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-018-08184-9