Microstructure and Mechanical Properties of Gas Tungsten Arc Welded High Manganese Steel Sheet

This study investigated microstructure and mechanical properties of high manganese steel sheet fabricated by gas tungsten arc welding (GTAW). The weld zone showed longitudinal coarse grains due to the coalescence of columnar dendrites grown into the direction of heat source, and the HAZ showed equia...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Metals (Basel ) 2019-11, Vol.9 (11), p.1167
Hauptverfasser: Park, Geon-Woo, Jo, Haeju, Park, Minha, Shin, Sunmi, Ko, Won-Seok, Park, Nokeun, Kim, Byung-Jun, Ahn, Yong-Sik, Jeon, Jong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This study investigated microstructure and mechanical properties of high manganese steel sheet fabricated by gas tungsten arc welding (GTAW). The weld zone showed longitudinal coarse grains due to the coalescence of columnar dendrites grown into the direction of heat source, and the HAZ showed equiaxed coarser grains than the base metal due to the thermal effect of GTAW process. Mn segregation occurred in the inter-dendritic regions of the weld zone and Mn depletion thus occurred in the weld matrix. Although the stacking fault energy is expected to be lowered due to the Mn depletion, no noticeable change in the initial phase and deformation mechanism was found in the weld matrix. Lower hardness and strength were shown in the weld zone than the base metal, which was caused by the coarser grain size. The negative strain rate sensitivity observed in the weld zone and the base metal is considered to have originated from the negative strain rate dependency of twinning nucleation stress.
ISSN:2075-4701
2075-4701
DOI:10.3390/met9111167