A versatile defect engineering strategy for room-temperature flash sintering
In this study, we reported that flash sintering (FS) could be efficiently triggered at room temperature (25 °C) by manipulating the oxygen concentration within ZnO powders via a versatile defect engineering strategy, fully demonstrating a promising method for the repaid prototyping of ceramics. With...
Gespeichert in:
Veröffentlicht in: | Journal of advanced ceramics 2022-07, Vol.11 (7), p.1172-1178 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this study, we reported that flash sintering (FS) could be efficiently triggered at room temperature (25 °C) by manipulating the oxygen concentration within ZnO powders via a versatile defect engineering strategy, fully demonstrating a promising method for the repaid prototyping of ceramics. With a low concentration of oxygen defects, FS was only activated at a high onset electric field of ∼2.7 kV/cm, while arcs appearing on the surfaces of samples. Strikingly, the onset electric field was decreased to < 0.51 kV/cm for the activation of FS initiated, which was associated with increased oxygen concentrations coupled with increased electrical conductivity. Thereby, a general room-temperature FS strategy by introducing intrinsic structural defect is suggested for a broad range of ceramics that are prone to form high concentration of point defects. |
---|---|
ISSN: | 2226-4108 2227-8508 |
DOI: | 10.1007/s40145-022-0591-5 |