The catecholamine precursor Tyrosine reduces autonomic arousal and decreases decision thresholds in reinforcement learning and temporal discounting

Supplementation with the catecholamine precursor L-Tyrosine might enhance cognitive performance, but overall findings are mixed. Here, we investigate the effect of a single dose of tyrosine (2g) vs. placebo on two catecholamine-dependent trans-diagnostic traits: model-based control during reinforcem...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS computational biology 2022-12, Vol.18 (12), p.e1010785
Hauptverfasser: Mathar, David, Erfanian Abdoust, Mani, Marrenbach, Tobias, Tuzsus, Deniz, Peters, Jan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Supplementation with the catecholamine precursor L-Tyrosine might enhance cognitive performance, but overall findings are mixed. Here, we investigate the effect of a single dose of tyrosine (2g) vs. placebo on two catecholamine-dependent trans-diagnostic traits: model-based control during reinforcement learning (2-step task) and temporal discounting, using a double-blind, placebo-controlled, within-subject design (n = 28 healthy male participants). We leveraged drift diffusion models in a hierarchical Bayesian framework to jointly model participants' choices and response times (RTS) in both tasks. Furthermore, comprehensive autonomic monitoring (heart rate, heart rate variability, pupillometry, spontaneous eye blink rate) was performed both pre- and post-supplementation, to explore potential physiological effects of supplementation. Across tasks, tyrosine consistently reduced participants' RTs without deteriorating task-performance. Diffusion modeling linked this effect to attenuated decision-thresholds in both tasks and further revealed increased model-based control (2-step task) and (if anything) attenuated temporal discounting. On the physiological level, participants' pupil dilation was predictive of the individual degree of temporal discounting. Tyrosine supplementation reduced physiological arousal as revealed by increases in pupil dilation variability and reductions in heart rate. Supplementation-related changes in physiological arousal predicted individual changes in temporal discounting. Our findings provide first evidence that tyrosine supplementation might impact psychophysiological parameters, and suggest that modeling approaches based on sequential sampling models can yield novel insights into latent cognitive processes modulated by amino-acid supplementation.
ISSN:1553-7358
1553-734X
1553-7358
DOI:10.1371/journal.pcbi.1010785