Variational tensor neural networks for deep learning

Deep neural networks (NNs) encounter scalability limitations when confronted with a vast array of neurons, thereby constraining their achievable network depth. To address this challenge, we propose an integration of tensor networks (TN) into NN frameworks, combined with a variational DMRG-inspired t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2024-08, Vol.14 (1), p.19017-17
Hauptverfasser: Jahromi, Saeed S., Orús, Román
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Deep neural networks (NNs) encounter scalability limitations when confronted with a vast array of neurons, thereby constraining their achievable network depth. To address this challenge, we propose an integration of tensor networks (TN) into NN frameworks, combined with a variational DMRG-inspired training technique. This in turn, results in a scalable tensor neural network (TNN) architecture capable of efficient training over a large parameter space. Our variational algorithm utilizes a local gradient-descent technique, enabling manual or automatic computation of tensor gradients, facilitating design of hybrid TNN models with combined dense and tensor layers. Our training algorithm further provides insight on the entanglement structure of the tensorized trainable weights and correlation among the model parameters. We validate the accuracy and efficiency of our method by designing TNN models and providing benchmark results for linear and non-linear regressions, data classification and image recognition on MNIST handwritten digits.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-024-69366-8