Optimization of Full-Duplex UAV Secure Communication with the Aid of RIS

Recently, unmanned aerial vehicles (UAVs) have gained significant popularity and have been extensively utilized in wireless communications. Due to the susceptibility of wireless channels to eavesdropping, interference and other security attacks, UAV communication security faces serious challenges. T...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Drones (Basel) 2023-09, Vol.7 (9), p.591
Hauptverfasser: Lai, Huan, Li, Dongfen, Xu, Fang, Wang, Xiao, Ning, Jin, Hu, Yanmei, Duo, Bin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Recently, unmanned aerial vehicles (UAVs) have gained significant popularity and have been extensively utilized in wireless communications. Due to the susceptibility of wireless channels to eavesdropping, interference and other security attacks, UAV communication security faces serious challenges. Therefore, novel solutions need to be investigated for handling corresponding issues. Note that the UAV with full-duplex (FD) mode can actively improve spectral efficiency, and reconfigurable intelligent surface (RIS) can enable the intelligent control of signal reflection for improving transmission quality. Accordingly, the security of UAV communications may be considerably improved by combining the two techniques mentioned above. In this paper, we investigate the performance of secure communication in urban areas, assisted by a FD UAV and an RIS, where the UAV receives sensitive information from the ground users and sends jamming signals to the ground eavesdroppers. Particularly, we propose an approach to jointly optimize the user scheduling, user transmit power, UAV jamming power, RIS phase shift, and UAV trajectory for maximizing the worst-case secrecy rate. However, the non-convexity of the problem makes it difficult to solve. Combining alternating optimization (AO), slack variable techniques, successive convex approximation (SCA), and semi-definite relaxation (SDR), we propose an effective algorithm to obtain a suboptimal solution. According to the simulation results, in contrast to other benchmark schemes, we show that our proposed algorithm can significantly improve the overall secrecy rate.
ISSN:2504-446X
2504-446X
DOI:10.3390/drones7090591