Baseline-Free Damage Imaging of Composite Lap Joint via Parallel Array of Piezoelectric Sensors

This paper presents a baseline-free damage imaging technique using a parallel array of piezoelectric sensors and a control board that facilitates custom combinations of sensor selection. This technique incorporates an imaging algorithm that uses parallel beams for generation and reception of ultraso...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors (Basel, Switzerland) Switzerland), 2023-11, Vol.23 (22), p.9050
Hauptverfasser: Barzegar, Mohsen, Ribeiro, Artur L., Pasadas, Dario J., Asokkumar, Aadhik, Raišutis, Renaldas, Ramos, Helena G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper presents a baseline-free damage imaging technique using a parallel array of piezoelectric sensors and a control board that facilitates custom combinations of sensor selection. This technique incorporates an imaging algorithm that uses parallel beams for generation and reception of ultrasonic guided waves in a pitch–catch configuration. A baseline-free reconstruction algorithm for probabilistic inspection of defects (RAPID) algorithm is adopted. The proposed RAPID method replaces the conventional approach of using signal difference coefficients with the maximum signal envelope as a damage index, ensuring independence from baseline data. Additionally, conversely to the conventional RAPID algorithm which uses all possible sensor combinations, an innovative selection of combinations is proposed to mitigate attenuation effects. The proposed method is designed for the inspection of lap joints. Experimental measurements were carried out on a composite lap joint, which featured two dissimilar-sized disbonds positioned at the lap joint’s borderline. A 2D correlation coefficient was used to quantitatively determine the similarity between the obtained images and a reference image with correct defect shapes and locations. The results demonstrate the effectiveness of the proposed damage imaging method in detecting both defects. Additionally, parametric studies were conducted to illustrate how various parameters influence the accuracy of the obtained imaging results.
ISSN:1424-8220
1424-8220
DOI:10.3390/s23229050