Approaching indeterminate thyroid nodules in the absence of molecular markers: "The BETH-TR score"
Context: Given the lack of easy access to molecular markers for indeterminate thyroid nodules (Bethesda (BETH) category III, IV), the clinician can either decide to get a second opinion from an expert high-volume thyroid cytopathologist, redo the FNAC after a period of 3-6 months, or send the patien...
Gespeichert in:
Veröffentlicht in: | Indian journal of endocrinology and metabolism 2020-03, Vol.24 (2), p.170-175 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Context: Given the lack of easy access to molecular markers for indeterminate thyroid nodules (Bethesda (BETH) category III, IV), the clinician can either decide to get a second opinion from an expert high-volume thyroid cytopathologist, redo the FNAC after a period of 3-6 months, or send the patient for a diagnostic hemithyroidectomy. Reviewing the sonographic risk features is also one way of triaging these nodules. The ACR-TIRADS (TR) is an objective method of sonographic risk assessment and is superior to other forms of sonographic classification. Aim: We propose combining the scoring of the TR category and BETH category (both expressed as a numerical value and summated) and look at the score which could potentially guide the clinician in deciding whom to send for surgery. Settings and Design: Observational prospective collection of consecutive patient data from the thyroid FNAC clinic. Statistical Analysis Used: The BETH categories were represented numerically and summated with the TR category. The categorical outcome variables of benign and malignant nodules and the summated score was analyzed using the Kruskal-Wallis test. Results: We analyzed 450 FNAC data, out of which 403 were thyroid nodule aspirates. Out of these nodules, 96 of them underwent surgery and 64% of these nodules were malignant on final histopathology (malignant = 62 and benign = 34). The mean size of the benign nodules was 3.6 ± 2.2 cm compared to 2.8 ± 1.8 cm of the malignant nodules. After excluding those with BETH 1 (n = 4), the mean BETH-TR score for benign nodules was 6 ± 1.4 and malignant nodules 9.4 ± 2.1 (P < 0.0001). The BETH-TR score progressively increased from 7.3 ± 0.92 in follicular thyroid cancers (FTC) to 8.6 ± 1.4 in follicular variant papillary thyroid cancer (FVPTC) to 10 ± 1.3 in classic papillary thyroid cancers (PTC). Among the indeterminate nodules (BETH III and IV; n = 40), the BETH-TR score of benign nodules was 6.75 ± 1 and malignant nodules was 7.5 ± 0.72 (P value = 0.01). A BETH-TR score ≥7 gave a sensitivity of 92% specificity of 74% and correctly identified malignant nodules in 86% of cases (likelihood ratio 3.5; ROC area: 0.8841; CI 0.79-0.94). Conclusion: A combined sonocytological BETH-TR score is one way to triage the management of indeterminate thyroid nodules. A BETH-TR score ≥7 gave a sensitivity of 92% specificity of 74% and correctly identified malignant nodules in 86% of cases. |
---|---|
ISSN: | 2230-8210 2230-9500 |
DOI: | 10.4103/ijem.IJEM_620_19 |