Plant phytochemicals-mediated synthesis of zinc oxide nanoparticles with antimicrobial, pharmacological, and environmental applications

Nanotechnology is a fast-growing field with large number of applications. Therefore, the current study, was designed to prepare Zinc Oxide nanoparticles (ZnO NPs) from A. modesta leaves extract through a cost-effective method. The prepared NPs were characterized through UV-Vis Spectroscopy (UV-Vis),...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Anais da Academia Brasileira de Ciências 2024-01, Vol.96 (4), p.e20240436
Hauptverfasser: Kamal, Asif, Akhtar, Muhammad Saeed, Nazish, Moona, Tahira, Khadija Tut, Rahman, Khursheed Ur, Iqbal, Attiya, Kamal, Khalid, Alrefaei, Abdulwahed Fahad, Faraj, Turki Kh, Zaman, Wajid
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Nanotechnology is a fast-growing field with large number of applications. Therefore, the current study, was designed to prepare Zinc Oxide nanoparticles (ZnO NPs) from A. modesta leaves extract through a cost-effective method. The prepared NPs were characterized through UV-Vis Spectroscopy (UV-Vis), Dynamic light scattering (DLS), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction analysis (XRD), scanning electron microscope (SEM), and energy dispersive X-ray (EDX). The XRD and DLS analysis revealed the hexagonal nanocrystalline nature of ZnO NPs. The FTIR results displayed multiple fictional groups and UV results confirmed its optical properties. The average size of the NPs was 68.3 nm with a band gap of 2.71 eV. The SEM images divulge a clover leaf shape of ZnO NPs. The EDX spectrum revealed the presence of zinc and oxygen. The prepared NPs showed excellent biomedical application. The highest antileishmanial activity was 68%, anti-inflammatory activity was 78%, total antioxidant capacity (TAC) was 79.1%, antibacterial potential (ZOI) 22.1 mm, and highest growth inhibition of 85 ± 2.1% against A. rabiei. The adsorption efficiency of 85.3% within 120 min was obtained. Conclusively ZnO NPs have shown potential biomedical and environmental applications and ought to be the more investigated to enhance their practical use.
ISSN:0001-3765
1678-2690
1678-2690
DOI:10.1590/0001-3765202420240436