Method of Validating Satellite Surface Reflectance Product Using Empirical Line Method

Atmospherically corrected surface reflectance (SR) products are used for reliable monitoring of land surfaces and are the standard products of Landsat sensors. Due to increased demand for SR products, a need exists to verify that the L2C2 (Level-2 Collection-2) SR products are precise and accurate....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Remote sensing (Basel, Switzerland) Switzerland), 2023-04, Vol.15 (9), p.2240
Hauptverfasser: K C, Meghraj, Leigh, Larry, Pinto, Cibele Teixeira, Kaewmanee, Morakot
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Atmospherically corrected surface reflectance (SR) products are used for reliable monitoring of land surfaces and are the standard products of Landsat sensors. Due to increased demand for SR products, a need exists to verify that the L2C2 (Level-2 Collection-2) SR products are precise and accurate. The Level-2 Collection 2 (L2C2) SR Product has processed satellite imagery data that correct for atmospheric effects such as absorption and scattering, providing a more accurate representation of Earth’s surface. The validation of SR products using ground truth measurement is essential. This study aims to develop and evaluate a validation methodology for satellite SR products. Thus, the Empirical Line Method (ELM) is used here for atmospheric validation of remotely sensed data. Validation is performed using the SR derived from ELM tied to ground truth measurement. Absolute surface reflectance models of Algodones Dunes and the Salton Sea located in North America Sonoran Desert are developed to extend the temporally limited ground truth measurements. This model can give ground truth reflectance in any time frame independent of time constraints. The result of the absolute surface reflectance model of Algodones Dunes indicates that the model predicts the response of Algodones Dunes with an average accuracy of 0.0041 and precision of 0.0063 and gives ground measurements across all multispectral between 350 and 2500 nm. For the Salton Sea, the model predicts the response of the Salton Sea with mean absolute error (MAE) of 0.0035 and gives ground measurements across all multispectral between 350 and 2500 nm. The ELM generates atmospheric coefficients (gain and bias), which are applied to an image to obtain SR. Validation results indicated that for L9-OLI-2, L8-OLI, and L5-TM-SR products, the RMSE range is 0.0019 to 0.0106, 0.0019 to 0.0148 and 0.0026 to 0.0045 reflectance unit, respectively, and accuracy is within 0.0038, 0.0022, and 0.0055 reflectance unit across all spectral bands of L9, L8, and L5, respectively. On average, the validation result showed a strong linear relation between the L2C2 SR products and ELM SR within 0.5 to 1 reflectance units. These results demonstrate the high accuracy and reliability of the L2C2 SR product, providing valuable information for a wide range of remote sensing applications, including land cover and land use mapping, vegetation monitoring, and climate change studies.
ISSN:2072-4292
2072-4292
DOI:10.3390/rs15092240