Asymptotic Structure for the Clique Density Theorem

The famous Erdos-Rademacher problem asks for the smallest number of r -cliques in a graph with the given number of vertices and edges. Despite decades of active attempts, the asymptotic value of this extremal function for all r was determined only recently, by Reiher [Annals of Mathematics, 184 (201...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Discrete analysis 2020
Hauptverfasser: Kim, Jaehoon, Liu, Hong, Pikhurko, Oleg, Sharifzadeh, Maryam
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The famous Erdos-Rademacher problem asks for the smallest number of r -cliques in a graph with the given number of vertices and edges. Despite decades of active attempts, the asymptotic value of this extremal function for all r was determined only recently, by Reiher [Annals of Mathematics, 184 (2016) 683-707]. Here we describe the asymptotic structure of all almost extremal graphs. This task for r = 3 was previously accomplished by Pikhurko and Razborov [Combinatorics, Probability and Computing, 26 (2017) 138-160].
ISSN:2397-3129
2397-3129
DOI:10.19086/da.18559