Light-enhanced osmotic energy generation with an aramid nanofiber membrane
Osmotic energy generation with reverse electrodialysis through membranes provides a worldwide free energy resource. Photo-driven proton transport in photosynthesis supplies basal energy for plants and living organisms on the planet. Here, we utilized aramid nanofiber (ANF) semiconductor-based membra...
Gespeichert in:
Veröffentlicht in: | NPG Asia materials 2023-12, Vol.15 (1), p.64-9, Article 64 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Osmotic energy generation with reverse electrodialysis through membranes provides a worldwide free energy resource. Photo-driven proton transport in photosynthesis supplies basal energy for plants and living organisms on the planet. Here, we utilized aramid nanofiber (ANF) semiconductor-based membranes to enable light-driven proton transport for osmotic energy generation. Under unilateral illumination, the light-driven proton transport system converted light energy into electrical energy and showed wavelength- and intensity-dependent transmembrane potentials and currents. Interestingly, the synergistic effects of simultaneous illumination and pressure provided a five-fold increase in the voltage and a three-fold increase in the current relative to pressure alone. Density functional theory calculations and spectroscopic measurements demonstrated that the ANF and photoinduced electrons enabled proton transport during illumination and generated a transmembrane potential and current. The light-driven proton transport system supports the development of devices with flexible and stable ANF membranes.
Osmotic energy generation, using aramid nanofiber (ANF) semiconductor membranes for light-driven proton transport, displayed wavelength and intensity-dependent potential and current under unilateral illumination. The simultaneous application of illumination and pressure led to a five-fold voltage increase and a three-fold current increase. Density functional theory calculations and spectroscopic measurements confirmed ANF’s role in photoinduced proton transport. This research has significant implications for developing flexible, stable ANF membrane-based energy devices. |
---|---|
ISSN: | 1884-4057 1884-4049 1884-4057 |
DOI: | 10.1038/s41427-023-00507-7 |