Global Dynamics of a Host-Vector-Predator Mathematical Model
A mathematical model which links predator-vector(prey) and host-vector theory is proposed to examine the indirect effect of predators on vector-host dynamics. The equilibria and the basic reproduction number R0 are obtained. By constructing Lyapunov functional and using LaSalle’s invariance principl...
Gespeichert in:
Veröffentlicht in: | Journal of Applied Mathematics 2014-01, Vol.2014 (2014), p.687-696-165 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A mathematical model which links predator-vector(prey) and host-vector theory is proposed to examine the indirect effect of predators on vector-host dynamics. The equilibria and the basic reproduction number R0 are obtained. By constructing Lyapunov functional and using LaSalle’s invariance principle, global stability of both the disease-free and disease equilibria are obtained. Analytical results show that R0 provides threshold conditions on determining the uniform persistence and extinction of the disease, and predator density at any time should keep larger or equal to its equilibrium level for successful disease eradication. Finally, taking the predation rate as parameter, we provide numerical simulations for the impact of predators on vector-host disease control. It is illustrated that predators have a considerable influence on disease suppression by reducing the density of the vector population. |
---|---|
ISSN: | 1110-757X 1687-0042 |
DOI: | 10.1155/2014/245650 |