Genome-wide identification, characterization of the MADS-box gene family in Chinese jujube and their involvement in flower development
MADS-box genes encode transcription factors that are involved in plant development control (particularly in floral organogenesis) and signal transduction pathways, though a comprehensive analysis of MADS-box family proteins in Chinese jujube ( Ziziphus jujuba Mill.) is still missing. Here, we report...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2017-04, Vol.7 (1), p.1025-13, Article 1025 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | MADS-box genes encode transcription factors that are involved in plant development control (particularly in floral organogenesis) and signal transduction pathways, though a comprehensive analysis of MADS-box family proteins in Chinese jujube (
Ziziphus jujuba
Mill.) is still missing. Here, we report a genome-wide analysis of the MADS-box gene family in Chinese jujube. Based on phylogenetic analyses, 52 jujube MADS-box genes were classified into 25 MIKC
C
-type, 3 MIKC
*
-type, 16 Mα, 5 Mβ and 3 Mγ genes. 37 genes were randomly distributed across all 12 putative chromosomes. We found that the type II genes are more complex than the type I genes and that tandem duplications have occurred in three groups of MADS-box genes. Meanwhile, some gene pairs in the same clade displayed similar or distinct expression profiles, suggesting possible functional redundancy or divergence. MIKC
C
-type genes exhibited typical temporal and spatial expression patterns in the four whorls of floral tissues. The expressions of B, C/D and E-type genes were significantly suppressed in phyllody as compared to flower, providing valuable evidence for their involvement in flower development. This study is the first comprehensive analysis of the MADS-box family in jujube, and provides valuable information for elucidating molecular regulation mechanism of jujube flower development. |
---|---|
ISSN: | 2045-2322 2045-2322 |
DOI: | 10.1038/s41598-017-01159-8 |