Plasticity of crystals and interfaces: From discrete dislocations to size-dependent continuum theory
In this communication, we summarize the current advances in size-dependent continuum plasticity of crystals, specifically, the rate-independent (quasistatic) formulation, on the basis of dislocation mechanics. A particular emphasis is placed on relaxation of slip at interfaces. This unsolved problem...
Gespeichert in:
Veröffentlicht in: | Theoretical and applied mechanics (Belgrade, Serbia) Serbia), 2010, Vol.37 (4), p.289-332 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this communication, we summarize the current advances in size-dependent
continuum plasticity of crystals, specifically, the rate-independent
(quasistatic) formulation, on the basis of dislocation mechanics. A
particular emphasis is placed on relaxation of slip at interfaces. This
unsolved problem is the current frontier of research in plasticity of
crystalline materials. We outline a framework for further investigation,
based on the developed theory for the bulk crystal. The bulk theory is based
on the concept of geometrically necessary dislocations, specifically, on
configurations where dislocations pile-up against interfaces. The average
spacing of slip planes provides a characteristic length for the theory. The
physical interpretation of the free energy includes the error in elastic
interaction energies resulting from coarse representation of dislocation
density fields. Continuum kinematics is determined by the fact that
dislocation pile-ups have singular distribution, which allows us to represent
the dense dislocation field at the boundary as a superdislocation, i.e., the
jump in the slip filed. Associated with this jump is a slip-dependent
interface energy, which in turn, makes this formulation suitable for analysis
of interface relaxation mechanisms.
Prikazani su nedavni istrazivacki rezultati u kontinualnoj plasticnosti
kristala (kvazistaticka formulacija nezavisna od brzine) na osnovu mehanike
dislokacija. Poseban naglasak je stavljen na relaksaciju klizanja na
medjupovrsi. Ovaj nereseni problem je na sadasnjem frontu istrazivanja u
plasticnosti kristalnih materijala. Postavljamo ovde okvir za sledeca
istrazivanja zasnovana na teoriji razvijenoj za trodimenzioni kristal. Ova
teorija je zasnovana na konceptu geometrijski potrebnih dislokacija, posebno,
na konfiguracijama gde dislokacije se nagomilavaju nasuprot medjupovrsi.
Prosecno rastojanje izmedju ravni klizanja obezbedjuje karakteristicnu
duzinu teorije. Fizicka interpretacija slobodne energije ukljucuje gresku u
energijama elasticne relaksacije koje rezultiraju iz grube reprezentacije
polja dislokacione gustine. Kinematika kontinuuma je odredjena cinjenicom da
dislokaciona nagomilavanja imaju singularni raspored koji nam dozvoljava da
prikazemo gusto dislokaciono polje na granici kao jednu superdislokaciju, to
jest, skok u polju klizanja. Pridruzena ovom skoku je energija medjupovrsi
koja zavisi od klizanja, sto opet cini ovu formulaciju podesnom za analizu
mehanizama relaksacije na medjupo |
---|---|
ISSN: | 1450-5584 2406-0925 |
DOI: | 10.2298/TAM1004289M |