Lagrangian 4-planes in holomorphic symplectic varieties of K3[4]-type
We classify the cohomology classes of Lagrangian 4-planes ℙ 4 in a smooth manifold X deformation equivalent to a Hilbert scheme of four points on a K3 surface, up to the monodromy action. Classically, the Mori cone of effective curves on a K3 surface S is generated by nonnegative classes C , for whi...
Gespeichert in:
Veröffentlicht in: | Central European journal of mathematics 2014-07, Vol.12 (7), p.952-975 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We classify the cohomology classes of Lagrangian 4-planes ℙ
4
in a smooth manifold
X
deformation equivalent to a Hilbert scheme of four points on a K3 surface, up to the monodromy action. Classically, the Mori cone of effective curves on a K3 surface
S
is generated by nonnegative classes
C
, for which (
C, C
) ≥ 0, and nodal classes
C
, for which (
C, C
) = −2; Hassett and Tschinkel conjecture that the Mori cone of a holomorphic symplectic variety
X
is similarly controlled by “nodal” classes
C
such that (
C, C
) = −γ, for (·,·) now the Beauville-Bogomolov form, where
γ
classifies the geometry of the extremal contraction associated to
C
. In particular, they conjecture that for
X
deformation equivalent to a Hilbert scheme of
n
points on a K3 surface, the class
C
=
ℓ
of a line in a smooth Lagrangian
n
-plane ℙ
n
must satisfy (
ℓ
,
ℓ
) = −(
n
+ 3)/2. We prove the conjecture for
n
= 4 by computing the ring of monodromy invariants on
X
, and showing there is a unique monodromy orbit of Lagrangian 4-planes. |
---|---|
ISSN: | 1895-1074 2391-5455 1644-3616 2391-5455 |
DOI: | 10.2478/s11533-013-0389-3 |