Strong interactions between solitons and background light in Brillouin-Kerr microcombs

Dissipative Kerr-soliton combs are laser pulses regularly sustained by a localized solitary wave on top of a continuous-wave background inside a nonlinear resonator. Usually, the intrinsic interactions between the background light and solitons are weak and localized. Here, we demonstrate a strong in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2024-02, Vol.15 (1), p.1661-1661, Article 1661
Hauptverfasser: Zhang, Menghua, Ding, Shulin, Li, Xinxin, Pu, Keren, Lei, Shujian, Xiao, Min, Jiang, Xiaoshun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Dissipative Kerr-soliton combs are laser pulses regularly sustained by a localized solitary wave on top of a continuous-wave background inside a nonlinear resonator. Usually, the intrinsic interactions between the background light and solitons are weak and localized. Here, we demonstrate a strong interaction between the generated soliton comb and the background light in a Brillouin-Kerr microcomb system. This strong interaction enables the generation of a monostable single-soliton microcomb on a silicon chip. Also, new phenomena related to soliton physics including solitons hopping between different states as well as controlling the formations of the soliton states by the pump power, are observed owing to such strong interaction. Utilizing this monostable single-soliton microcomb, we achieve the 100% deterministic turnkey operation successfully without any feedback controls. Importantly, it allows to output turnkey ultra-low-noise microwave signals using a free-running pump. Here the authors demonstrate a strong interaction between the generated solitons and background light in a Brillouin-Kerr microcomb system. Based on this unique physical mechanism, they achieve a monostable single soliton microcomb and a turnkey single-soliton microcomb without employing any optical/electrical control or feedback.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-024-46026-z