Comparative Study of Pd–Ni Bimetallic Catalysts Supported on UiO-66 and UiO-66-NH2 in Selective 1,3-Butadiene Hydrogenation
Selective hydrogenation of 1,3-butadiene (BD) is regarded as the most promising route for removing BD from butene streams. Bimetallic Pd–Ni catalysts with changed Pd/Ni molar ratios and monometallic Pd catalysts were synthesized using two differently structured metal-organic framework supports: UiO-...
Gespeichert in:
Veröffentlicht in: | Nanomaterials (Basel, Switzerland) Switzerland), 2022-04, Vol.12 (9), p.1484 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Selective hydrogenation of 1,3-butadiene (BD) is regarded as the most promising route for removing BD from butene streams. Bimetallic Pd–Ni catalysts with changed Pd/Ni molar ratios and monometallic Pd catalysts were synthesized using two differently structured metal-organic framework supports: UiO-66 and UiO-66-NH2. The effects of the structure of support and the molar ratio of Pd/Ni on the catalytic property of selective BD hydrogenation were studied. The Pd–Ni bimetallic supported catalysts, PdNi/UiO-66 (1:1) and PdNi/UiO-66-NH2 (1:1), exhibited fine catalytic property at low temperature. Compared with UiO-66, UiO-66-NH2 with a certain number of alkaline sites could reduce the catalytic activity for the BD hydrogenation reaction. However, the alkaline environment of UiO-66-NH2 is helpful to improve the butene selectivity. PdNi/UiO-66-NH2 (1:1) catalyst presented better stability than PdNi/UiO-66 (1:1) under the reaction conditions, caused by the strong interaction between the –NH2 groups of UiO-66-NH2 and PdNi NPs. Moreover, the PdNi/UiO-66-NH2 (1:1) catalyst presented good reproducibility in the hydrogenation of BD. These findings afford a beneficial guidance for the design and preparation of efficient catalysts for selective BD hydrogenation. |
---|---|
ISSN: | 2079-4991 2079-4991 |
DOI: | 10.3390/nano12091484 |