Conductance Quantization Behavior in Pt/SiN/TaN RRAM Device for Multilevel Cell

In this work, we fabricated a Pt/SiN/TaN memristor device and characterized its resistive switching by controlling the compliance current and switching polarity. The chemical and material properties of SiN and TaN were investigated by X-ray photoelectron spectroscopy. Compared with the case of a hig...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Metals (Basel ) 2021-12, Vol.11 (12), p.1918
Hauptverfasser: Park, Jongmin, Lee, Seungwook, Lee, Kisong, Kim, Sungjun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this work, we fabricated a Pt/SiN/TaN memristor device and characterized its resistive switching by controlling the compliance current and switching polarity. The chemical and material properties of SiN and TaN were investigated by X-ray photoelectron spectroscopy. Compared with the case of a high compliance current (5 mA), the resistive switching was more gradual in the set and reset processes when a low compliance current (1 mA) was applied by DC sweep and pulse train. In particular, low-power resistive switching was demonstrated in the first reset process, and was achieved by employing the negative differential resistance effect. Furthermore, conductance quantization was observed in the reset process upon decreasing the DC sweep speed. These results have the potential for multilevel cell (MLC) operation. Additionally, the conduction mechanism of the memristor device was investigated by I-V fitting.
ISSN:2075-4701
2075-4701
DOI:10.3390/met11121918