Effect of Spray-Drying and Freeze-Drying on the Properties of Soybean Hydrolysates
The use of enzyme-assisted aqueous extraction to extract soybean oil will produce soy protein hydrolysates (SPH) that have good antioxidant properties but are bitter and hygroscopic. To microencapsulate these hydrolysates, soy protein isolate/maltodextrin mixtures were used as the carrier. The effec...
Gespeichert in:
Veröffentlicht in: | Journal of chemistry 2020-01, Vol.2020 (2020), p.1-8 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The use of enzyme-assisted aqueous extraction to extract soybean oil will produce soy protein hydrolysates (SPH) that have good antioxidant properties but are bitter and hygroscopic. To microencapsulate these hydrolysates, soy protein isolate/maltodextrin mixtures were used as the carrier. The effects of spray-drying and freeze-drying on the bitterness, hygroscopicity, and antioxidant properties were compared. The properties of different dried samples were compared using solubility, hygroscopicity, moisture content, water activity, flowability, and glass transition temperature (Tg). The results showed that the spray-drying was more effective than freeze-drying. Hygroscopicity was reduced to 18.2 g/100 g, and the Tg value was raised to 80.8°C. The morphology was analyzed using scanning electron microscopy, and the antioxidant properties of the samples were measured using the ABTS˙+ radical scavenging activity. The results showed that spray-dried SPH had more carrier masking, which weakened bitterness, reduced moisture absorption, and had no significant negative impact on its oxidation resistance, solubility, and flowability, and spray-drying after carrier encapsulation of SPH improved the recovery rate. |
---|---|
ISSN: | 2090-9063 2090-9071 |
DOI: | 10.1155/2020/9201457 |