Novel cancer-fighting role of ticagrelor inhibits GTSE1-induced EMT by regulating PI3K/Akt/NF-κB signaling pathway in malignant glioma

Glioma is the most common malignant brain tumor of the central nervous system. Despite of the improvement of therapeutic strategy, the prognosis of malignant glioma patients underwent by STUPP strategy is still unexpected. Previous studies have suggested that ticagrelor exerted chemotherapeutic effe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Heliyon 2024-05, Vol.10 (9), p.e30833-e30833, Article e30833
Hauptverfasser: Lu, Enzhou, Zhao, Boxian, Yuan, Chao, Liang, Yanchao, Wang, Xiaoxiong, Yang, Guang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Glioma is the most common malignant brain tumor of the central nervous system. Despite of the improvement of therapeutic strategy, the prognosis of malignant glioma patients underwent by STUPP strategy is still unexpected. Previous studies have suggested that ticagrelor exerted chemotherapeutic effects by inhibition of epithelial-mesenchymal transition (EMT) in various diseases including tumors. However, whether ticagrelor can exhibit the antitumor efficiency in glioma by affecting the EMT process is still unclear. In this study, we investigated the cancer-fighting role of ticagrelor and demonstrated its chemotherapeutic mechanism in glioma. The MTT assay was performed to detect the cytotoxicity of ticagrelor in glioma cells. We evaluated the expression of Ki67 in glioma cells by immunofluorescence assay after ticagrelor treatment. We conducted wound healing assay and transwell assay to determine the effects of ticagrelor on the migration and invasion of glioma cells. RNA-seq analysis was conducted to examine potential target genes and alternative signaling pathways for ticagrelor treatment. The expression levels of key EMT -related proteins were examined by Western blot experiment. Ticagrelor inhibited the proliferation, migration and invasion of glioma cells with a favorable toxicity profile in vitro. Ticagrelor downregulated the expression of GTSE1 in glioma cells. RNA-seq analysis explored that GTSE1 acted as the potential target gene for ticagrelor treatment. Upregulation of GTSE1 antagonized the inhibitory effect of ticagrelor on the invasion of glioma and EMT progression by regulation of PI3K/Akt/NF-κB signaling pathway. And ticagrelor also exhibited the similar chemotherapeutic effect of glioma in vivo. Ticagrelor as a potential chemotherapeutic option induced the inhibition of the GTSE1-induced EMT progression by regulation of PI3K/AKT/NF-κB signaling pathway.
ISSN:2405-8440
2405-8440
DOI:10.1016/j.heliyon.2024.e30833