Assessment of Cystamine's Radioprotective/Antioxidant Ability under High-Dose-Rate Irradiation: A Monte Carlo Multi-Track Chemistry Simulation Study

(1) Background: cystamine and its reduced form cysteamine have radioprotective/antioxidant effects in vivo. In this study, we use an in vitro model system to examine the behavior of cystamine towards the reactive primary species produced during the radiolysis of the Fricke dosimeter under high dose-...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Antioxidants 2023-03, Vol.12 (3), p.776
Hauptverfasser: Penabeï, Samafou, Meesungnoen, Jintana, Jay-Gerin, Jean-Paul
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:(1) Background: cystamine and its reduced form cysteamine have radioprotective/antioxidant effects in vivo. In this study, we use an in vitro model system to examine the behavior of cystamine towards the reactive primary species produced during the radiolysis of the Fricke dosimeter under high dose-rate irradiation conditions. (2) Methods: our approach was to use the familiar radiolytic oxidation of ferrous to ferric ions as an indicator of the radioprotective/antioxidant capacity of cystamine. A Monte Carlo computer code was used to simulate the multi-track radiation-induced chemistry of aerated and deaerated Fricke-cystamine solutions as a function of dose rate while covering a large range of cystamine concentrations. (3) Results: our simulations revealed that cystamine provides better protection at pulsed dose rates compared to conventional, low-dose-rate irradiations. Furthermore, our simulations confirmed the radical-capturing ability of cystamine, clearly indicating the strong antioxidant profile of this compound. (4) Conclusion: assuming that these findings can be transposable to cells and tissues at physiological pH, it is suggested that combining cystamine with FLASH-RT could be a promising approach to further enhance the therapeutic ratio of cancer cure.
ISSN:2076-3921
2076-3921
DOI:10.3390/antiox12030776