Direct Z-Scheme g-C3N5/Cu3TiO4 Heterojunction Enhanced Photocatalytic Performance of Chromene-3-Carbonitriles Synthesis under Visible Light Irradiation

In order to make the synthesis of pharmaceutically active carbonitriles efficient, environmentally friendly, and sustainable, the method is regularly examined. Here, we introduce a brand-new, very effective Cu3TiO4/g-C3N5 photocatalyst for the production of compounds containing chromene-3-carbonitri...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Catalysts 2022-12, Vol.12 (12), p.1593
Hauptverfasser: Arunachalapandi, Murugan, Chellapandi, Thangapandi, Madhumitha, Gunabalan, Manjupriya, Ravichandran, Aravindraj, Kumar, Roopan, Selvaraj Mohana
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In order to make the synthesis of pharmaceutically active carbonitriles efficient, environmentally friendly, and sustainable, the method is regularly examined. Here, we introduce a brand-new, very effective Cu3TiO4/g-C3N5 photocatalyst for the production of compounds containing chromene-3-carbonitriles. The direct Z-Scheme photo-generated charge transfer mechanism used by the Cu3TiO4/g-C3N5 photocatalyst results in a suppressed rate of electron-hole pair recombination and an increase in photocatalytic activity. Experiments showed that the current method has some advantages, such as using an environmentally friendly and sustainable photocatalyst, having a simple procedure, quick reaction times, a good product yield (82–94%), and being able to reuse the photocatalyst multiple times in a row without noticeably decreasing its photocatalytic performance.
ISSN:2073-4344
2073-4344
DOI:10.3390/catal12121593