Effective texture features in mammogram images via multi-roi segmentation

Digital mammography increasingly necessitates image segmentation for the purpose of dividing mammograms into individual slices. For the purpose of removing suspicious masses or tumours from mammograms, this process is carried out using a region of interest (ROI). More training photos are needed for...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:MATEC web of conferences 2024, Vol.392, p.1136
Hauptverfasser: Prasad, K. Rajendra, Praveen Kumar, Chatakunta, Suneel, Sajja, Raghu Kumar, Lingamallu
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Digital mammography increasingly necessitates image segmentation for the purpose of dividing mammograms into individual slices. For the purpose of removing suspicious masses or tumours from mammograms, this process is carried out using a region of interest (ROI). More training photos are needed for mammography image classification, and these circumstances, ROI requires more processing time. The temporal complexity difficulties with the suggested multi-ROI method are the subject of this article. To show how effective the suggested multi-ROI is compared to the current segmentation approach, experiments are conducted on benchmarked datasets.
ISSN:2261-236X
2261-236X
DOI:10.1051/matecconf/202439201136