Gaussian Copula Regression Modeling for Marker Classification Metrics with Competing Risk Outcomes

Decisions regarding competing risks are usually based on a continuous-valued marker toward predicting a cause-specific outcome. The classification power of a marker can be summarized using the time-dependent receiver operating characteristic curve and the corresponding area under the curve (AUC). Th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of mathematics and mathematical sciences 2024-01, Vol.2024, p.1-13
Hauptverfasser: Vásquez, Alejandro Román, Escarela, Gabriel, Reyes-Cervantes, Hortensia Josefina, Núñez-Antonio, Gabriel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Decisions regarding competing risks are usually based on a continuous-valued marker toward predicting a cause-specific outcome. The classification power of a marker can be summarized using the time-dependent receiver operating characteristic curve and the corresponding area under the curve (AUC). This paper proposes a Gaussian copula-based model to represent the joint distribution of the continuous-valued marker, the overall survival time, and the cause-specific outcome. Then, it is used to characterize the time-varying ROC curve in the context of competing risks. Covariate effects are incorporated by linking linear components to the skewed normal distribution for the margin of the marker, a parametric proportional hazards model for the survival time, and a logit model for the cause of failure. Estimation is carried out using maximum likelihood, and a bootstrap technique is implemented to obtain confidence intervals for the AUC. Information-criteria strategies are employed to find a parsimonious model. The performance of the proposed model is evaluated in simulation studies, considering different sample sizes and censoring distributions. The methods are illustrated with the reanalysis of a prostate cancer clinical trial. The joint regression strategy produces a straightforward and flexible model of the time-dependent ROC curve in the presence of competing risks, enhancing the understanding of how covariates may affect the discrimination of a marker.
ISSN:0161-1712
1687-0425
DOI:10.1155/2024/1671254