Uncovering Dynamics of Global Mangrove Gains and Losses
Supporting successful global mangrove conservation and policy requires accurate identification of anthropogenic and biophysical drivers of mangrove extent, yet such studies are scarce. We apply a hybrid methodology, combining existing remote sensing mangrove maps with local expert knowledge of veget...
Gespeichert in:
Veröffentlicht in: | Remote sensing (Basel, Switzerland) Switzerland), 2023-08, Vol.15 (15), p.3872 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Supporting successful global mangrove conservation and policy requires accurate identification of anthropogenic and biophysical drivers of mangrove extent, yet such studies are scarce. We apply a hybrid methodology, combining existing remote sensing mangrove maps with local expert knowledge of vegetation and land use dynamics. We conducted stratified random sampling in eight subregions, and local experts visually interpreted over 20,900 plots using high-resolution imagery in Collect Earth Online. Similar to previous estimates, we found 147,771 km2 (±1.4%) of mangroves globally in 2020 and that rates of mangrove loss have decreased from 2000–2010 to 2010–2020, largely driven by South and Southeast Asia. Anthropogenic drivers of loss have shifted across subregions, with oil palm cultivation emerging in South and Southeast Asia and aquaculture in South America and Western and Central Africa, highlighting the need for ongoing monitoring and adaptable conservation efforts. Natural expansion outpaced natural retraction in both periods. This is the first global study uncovering land use drivers of mangrove decline and recovery, only made possible by collaboration with local experts. Key breakthroughs include successfully discerning spectrally similar anthropogenic from biophysical drivers, such as aquaculture from natural retraction, and creating data collection approaches that streamline visual interpretation efforts. |
---|---|
ISSN: | 2072-4292 2072-4292 |
DOI: | 10.3390/rs15153872 |