PlasmidMaker is a versatile, automated, and high throughput end-to-end platform for plasmid construction

Plasmids are used extensively in basic and applied biology. However, design and construction of plasmids, specifically the ones carrying complex genetic information, remains one of the most time-consuming, labor-intensive, and rate-limiting steps in performing sophisticated biological experiments. H...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2022-05, Vol.13 (1), p.2697-2697, Article 2697
Hauptverfasser: Enghiad, Behnam, Xue, Pu, Singh, Nilmani, Boob, Aashutosh Girish, Shi, Chengyou, Petrov, Vassily Andrew, Liu, Roy, Peri, Siddhartha Suryanarayana, Lane, Stephan Thomas, Gaither, Emily Danielle, Zhao, Huimin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Plasmids are used extensively in basic and applied biology. However, design and construction of plasmids, specifically the ones carrying complex genetic information, remains one of the most time-consuming, labor-intensive, and rate-limiting steps in performing sophisticated biological experiments. Here, we report the development of a versatile, robust, automated end-to-end platform named PlasmidMaker that allows error-free construction of plasmids with virtually any sequences in a high throughput manner. This platform consists of a most versatile DNA assembly method using Pyrococcus furiosus Argonaute ( Pf Ago)-based artificial restriction enzymes, a user-friendly frontend for plasmid design, and a backend that streamlines the workflow and integration with a robotic system. As a proof of concept, we used this platform to generate 101 plasmids from six different species ranging from 5 to 18 kb in size from up to 11 DNA fragments. PlasmidMaker should greatly expand the potential of synthetic biology. Despite their broad utility, design and construction of plasmids remains laborious and time-consuming. Here the authors report a robust, versatile, and automated end-to-end platform that enables scarless construction of virtually any plasmid.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-022-30355-y