Interfacial Bonding Mechanisms of Natural Fibre-Matrix Composites: An Overview

The development of natural fiber (NFr) composites for a variety of applications is on the rise. The optimization of the interfacial bonding (IFB) between the reinforcing NFr and polymer matrix is perhaps the single most critical aspect in the development of natural fibre polymer composites (NFPCs) w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bioresources 2022-11, Vol.17 (4), p.7031-7090
Hauptverfasser: Mohammed Muhanna Mohammed, M.S.M. Rasidi, Aeshah Muhanna Mohammed, Rozyanty Binit Rahman, Azlin Fazlin Osman, Tijjani Adam, Bashir O. Betar, Omar Sabar Dahham
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The development of natural fiber (NFr) composites for a variety of applications is on the rise. The optimization of the interfacial bonding (IFB) between the reinforcing NFr and polymer matrix is perhaps the single most critical aspect in the development of natural fibre polymer composites (NFPCs) with high mechanical performance. While the IFB is critical in determining the mechanical properties of the NFPCs, such as stress transfer, it is one of the least understood components. This article offers a summary of IFB mechanisms, different modification approaches targeted at lowering incompatibility and improving IFB, and evaluation of the impact of IFB. It has been found that 1) In general, interdiffusion, electrostatic adhesion, chemical reactions, and mechanical interlocking are accountable for the IFB; 2) the incompatibility of the fibre and matrix, which results in poor dispersion of the fiber, weak IFB, and ultimately worse composite quality, may be addressed through strategic modifications; and 3) Interfacial interactions between polymers and nanoparticles (NPs) are significantly improving their performance in areas like thermal, mechanical, robust IFB, and moisture absorption. As a result, this review study could be an important resource for scholars interested in coating and treating NFr to further enhance their surface characteristics.
ISSN:1930-2126