Green Synthesis of Controlled Shape Silver Nanostructures and Their Peroxidase, Catalytic Degradation, and Antibacterial Activity
Nanoparticles with unique shapes have garnered significant interest due to their enhanced surface area-to-volume ratio, leading to improved potential compared to their spherical counterparts. The present study focuses on a biological approach to producing different silver nanostructures employing le...
Gespeichert in:
Veröffentlicht in: | Journal of functional biomaterials 2023-06, Vol.14 (6), p.325 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Nanoparticles with unique shapes have garnered significant interest due to their enhanced surface area-to-volume ratio, leading to improved potential compared to their spherical counterparts. The present study focuses on a biological approach to producing different silver nanostructures employing
leaf extract. Phytoextract provides metabolites, serving as reducing and stabilizing agents in the reaction. Two different silver nanostructures, dendritic (AgNDs) and spherical (AgNPs), were successfully formed by adjusting the phytoextract concentration with and without copper ions in the reaction system, resulting in particle sizes of ~300 ± 30 nm (AgNDs) and ~100 ± 30 nm (AgNPs). These nanostructures were characterized by several techniques to ascertain their physicochemical properties; the surface was distinguished by functional groups related to polyphenols due to plant extract that led to critical controlling of the shape of nanoparticles. Nanostructures performance was assessed in terms of peroxidase-like activity, catalytic behavior for dye degradation, and antibacterial activity. Spectroscopic analysis revealed that AgNDs demonstrated significantly higher peroxidase activity compared to AgNPs when evaluated using chromogenic reagent 3,3',5,5'-tetramethylbenzidine. Furthermore, AgNDs exhibited enhanced catalytic degradation activities, achieving degradation percentages of 92.2% and 91.0% for methyl orange and methylene blue dyes, respectively, compared to 66.6% and 58.0% for AgNPs. Additionally, AgNDs exhibited superior antibacterial properties against Gram-negative
compared to Gram-positive
, as evidenced by the calculated zone of inhibition. These findings highlight the potential of the green synthesis method in generating novel nanoparticle morphologies, such as dendritic shape, compared with the traditionally synthesized spherical shape of silver nanostructures. The synthesis of such unique nanostructures holds promise for various applications and further investigations in diverse sectors, including chemical and biomedical fields. |
---|---|
ISSN: | 2079-4983 2079-4983 |
DOI: | 10.3390/jfb14060325 |