Extracellular Interactions of Alpha-Synuclein in Multiple System Atrophy
Multiple system atrophy, characterized by atypical Parkinsonism, results from central nervous system (CNS) cell loss and dysfunction linked to aggregates of the normally pre-synaptic α-synuclein protein. Mostly cytoplasmic pathological α-synuclein inclusion bodies occur predominantly in oligodendroc...
Gespeichert in:
Veröffentlicht in: | International journal of molecular sciences 2018-12, Vol.19 (12), p.4129 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Multiple system atrophy, characterized by atypical Parkinsonism, results from central nervous system (CNS) cell loss and dysfunction linked to aggregates of the normally pre-synaptic α-synuclein protein. Mostly cytoplasmic pathological α-synuclein inclusion bodies occur predominantly in oligodendrocytes in affected brain regions and there is evidence that α-synuclein released by neurons is taken up preferentially by oligodendrocytes. However, extracellular α-synuclein has also been shown to interact with other neural cell types, including astrocytes and microglia, as well as extracellular factors, mediating neuroinflammation, cell-to-cell spread and other aspects of pathogenesis. Here, we review the current evidence for how α-synuclein present in the extracellular milieu may act at the cell surface to drive components of disease progression. A more detailed understanding of the important extracellular interactions of α-synuclein with neuronal and non-neuronal cell types both in the brain and periphery may provide new therapeutic targets to modulate the disease process. |
---|---|
ISSN: | 1422-0067 1661-6596 1422-0067 |
DOI: | 10.3390/ijms19124129 |