Decoupled Six-Axis Force-Moment Sensor with a Novel Strain Gauge Arrangement and Error Reduction Techniques

In this study, a novel strain gauge arrangement and error reduction techniques were proposed to minimize crosstalk reading and simultaneously increase sensitivity on a decoupled six-axis force-moment (F/M) sensor. The calibration process that comprises the least squares method and error reduction te...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors (Basel, Switzerland) Switzerland), 2019-07, Vol.19 (13), p.3012
Hauptverfasser: Kebede, Getnet Ayele, Ahmad, Anton Royanto, Lee, Shao-Chun, Lin, Chyi-Yeu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this study, a novel strain gauge arrangement and error reduction techniques were proposed to minimize crosstalk reading and simultaneously increase sensitivity on a decoupled six-axis force-moment (F/M) sensor. The calibration process that comprises the least squares method and error reduction techniques was implemented to obtain a robust decoupling matrix. A decoupling matrix is very crucial for minimizing error and crosstalk. A novel strain gauge arrangement that comprised double parallel strain gauges in the decoupled six-axis force-moment sensor was implemented to obtain high sensitivity. The experimental results revealed that the maximum calibration error, F/M sensor measurement error, and crosstalk readings were reduced to 3.91%, 1.78%, and 4.78%, respectively.
ISSN:1424-8220
1424-8220
DOI:10.3390/s19133012