Intercomparison of Satellite-Derived Solar Irradiance from the GEO-KOMSAT-2A and HIMAWARI-8/9 Satellites by the Evaluation with Ground Observations
Solar irradiance derived from satellite imagery is useful for solar resource assessment, as well as climate change research without spatial limitation. The University of Arizona Solar Irradiance Based on Satellite–Korea Institute of Energy Research (UASIBS-KIER) model has been updated to version 2.0...
Gespeichert in:
Veröffentlicht in: | Remote sensing (Basel, Switzerland) Switzerland), 2020-07, Vol.12 (13), p.2149 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Solar irradiance derived from satellite imagery is useful for solar resource assessment, as well as climate change research without spatial limitation. The University of Arizona Solar Irradiance Based on Satellite–Korea Institute of Energy Research (UASIBS-KIER) model has been updated to version 2.0 in order to employ the satellite imagery produced by the new satellite platform, GK-2A, launched on 5 December 2018. The satellite-derived solar irradiance from UASIBS-KIER model version 2.0 is evaluated against the two ground observations in Korea at instantaneous, hourly, and daily time scales in comparison with the previous version of UASIBS-KIER model that was optimized for the COMS satellite. The root mean square error of the UASIBS-KIER model version 2.0, normalized for clear-sky solar irradiance, ranges from 4.8% to 5.3% at the instantaneous timescale when the sky is clear. For cloudy skies, the relative root mean square error values are 14.5% and 15.9% at the stations located in Korea and Japan, respectively. The model performance was improved when the UASIBS-KIER model version 2.0 was used for the derivation of solar irradiance due to the finer spatial resolution. The daily aggregates from the proposed model are proven to be the most reliable estimates, with 0.5 km resolution, compared with the solar irradiance derived by the other models. Therefore, the solar resource map built by major outputs from the UASIBS-KIER model is appropriate for solar resource assessment. |
---|---|
ISSN: | 2072-4292 2072-4292 |
DOI: | 10.3390/rs12132149 |