Exceptional set in Waring–Goldbach problem for sums of one square and five cubes
Let $ N $ be a sufficiently large integer. In this paper, it is proved that, with at most $ O\big(N^{4/9+\varepsilon}\big) $ exceptions, all even positive integers up to $ N $ can be represented in the form $ p_1^2+p_2^3+p_3^3+p_4^3+p_5^3+p_6^3 $, where $ p_1, p_2, p_3, p_4, p_5, p_6 $ are prime num...
Gespeichert in:
Veröffentlicht in: | AIMS mathematics 2022, Vol.7 (2), p.2940-2955 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let $ N $ be a sufficiently large integer. In this paper, it is proved that, with at most $ O\big(N^{4/9+\varepsilon}\big) $ exceptions, all even positive integers up to $ N $ can be represented in the form $ p_1^2+p_2^3+p_3^3+p_4^3+p_5^3+p_6^3 $, where $ p_1, p_2, p_3, p_4, p_5, p_6 $ are prime numbers. |
---|---|
ISSN: | 2473-6988 2473-6988 |
DOI: | 10.3934/math.2022162 |