Exceptional set in Waring–Goldbach problem for sums of one square and five cubes

Let $ N $ be a sufficiently large integer. In this paper, it is proved that, with at most $ O\big(N^{4/9+\varepsilon}\big) $ exceptions, all even positive integers up to $ N $ can be represented in the form $ p_1^2+p_2^3+p_3^3+p_4^3+p_5^3+p_6^3 $, where $ p_1, p_2, p_3, p_4, p_5, p_6 $ are prime num...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AIMS mathematics 2022, Vol.7 (2), p.2940-2955
Hauptverfasser: Li, Jinjiang, Pan, Yiyang, Song, Ran, Zhang, Min
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let $ N $ be a sufficiently large integer. In this paper, it is proved that, with at most $ O\big(N^{4/9+\varepsilon}\big) $ exceptions, all even positive integers up to $ N $ can be represented in the form $ p_1^2+p_2^3+p_3^3+p_4^3+p_5^3+p_6^3 $, where $ p_1, p_2, p_3, p_4, p_5, p_6 $ are prime numbers.
ISSN:2473-6988
2473-6988
DOI:10.3934/math.2022162