Prediction of Soil-Available Potassium Content with Visible Near-Infrared Ray Spectroscopy of Different Pretreatment Transformations by the Boosting Algorithms

The application of visible near-infrared (VIS-NIR) analysis technology to quantify the nutrients in soil has been widely recognized. It is important to improve the performance of regression models that can predict the soil-available potassium concentration. This study collected soil samples from sou...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied sciences 2020-02, Vol.10 (4), p.1520
Hauptverfasser: Jin, Xiu, Li, Shaowen, Zhang, Wu, Zhu, Juanjuan, Sun, Jia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The application of visible near-infrared (VIS-NIR) analysis technology to quantify the nutrients in soil has been widely recognized. It is important to improve the performance of regression models that can predict the soil-available potassium concentration. This study collected soil samples from southern Anhui, China, and concentrated on the modelling methods by using 29 pretreatment methods. The results show that a combination of three methods, Savitzky–Golay, standard normal variate, and dislodge tendency, exhibited better stability than others because it was the most capable of achieving levels A and B of the ratio of performance of deviation. The boosting algorithms that form an ensemble of multiple weak predictors exhibited better performance than partial least square (PLS) regression and support vector regression (SVR) for the prediction of soil-available potassium. These regression models could be employed to precisely predict the soil-available potassium concentration.
ISSN:2076-3417
2076-3417
DOI:10.3390/app10041520