Minimizing Delay and Transmission Times with Long Lifetime in Code Dissemination Scheme for High Loss Ratio and Low Duty Cycle Wireless Sensor Networks
Software defined networks brings greater flexibility to networks and therefore generates new vitality. Thanks to the ability to update soft code to sensor nodes, wireless sensor networks (WSNs) brings profound changes to Internet of Things. However, it is a challenging issue to minimize delay and tr...
Gespeichert in:
Veröffentlicht in: | Sensors (Basel, Switzerland) Switzerland), 2018-10, Vol.18 (10), p.3516 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Software defined networks brings greater flexibility to networks and therefore generates new vitality. Thanks to the ability to update soft code to sensor nodes, wireless sensor networks (WSNs) brings profound changes to Internet of Things. However, it is a challenging issue to minimize delay and transmission times and maintain long lifetime when broadcasting data packets in high loss ratio and low duty cycle WSNs. Although there have been some research concerning code dissemination, those schemes can only achieve a tradeoff between different performances, instead of optimizing all these important performances at the same time. Therefore, in this paper we propose a new strategy that can reduce delay and transmission times simultaneously. In traditional method, the broadcasting nature of wireless communication is not sufficiently utilized. By allowing sons of the same parent node to share awake slots, the broadcasting nature is well exploited and delay is thus reduced as well as transmission times with lifetime not affected. And, as we discover there is energy surplus when collecting data in area away from sink, we further improve this strategy so that all the performances can be further bettered. Compared with traditional method, the methods we design (IFAS, BTAS and AAPS) can respectively reduce delay by 20.56%, 31.59%, 55.16% and reduce transmission times by 29.53%, 43.93%, 42.04%, while not reducing lifetime. |
---|---|
ISSN: | 1424-8220 1424-8220 |
DOI: | 10.3390/s18103516 |