EXPERIENCES WITH ACQUIRING HIGHLY REDUNDANT SPATIAL DATA TO SUPPORT DRIVERLESS VEHICLE TECHNOLOGIES
As vehicle technology is moving towards higher autonomy, the demand for highly accurate geospatial data is rapidly increasing, as accurate maps have a huge potential of increasing safety. In particular, high definition 3D maps, including road topography and infrastructure, as well as city models alo...
Gespeichert in:
Veröffentlicht in: | ISPRS annals of the photogrammetry, remote sensing and spatial information sciences remote sensing and spatial information sciences, 2018-05, Vol.IV-2, p.161-168 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | As vehicle technology is moving towards higher autonomy, the demand for highly accurate geospatial data is rapidly increasing, as accurate maps have a huge potential of increasing safety. In particular, high definition 3D maps, including road topography and infrastructure, as well as city models along the transportation corridors represent the necessary support for driverless vehicles. In this effort, a vehicle equipped with high-, medium- and low-resolution active and passive cameras acquired data in a typical traffic environment, represented here by the OSU campus, where GPS/GNSS data are available along with other navigation sensor data streams. The data streams can be used for two purposes. First, high-definition 3D maps can be created by integrating all the sensory data, and Data Analytics/Big Data methods can be tested for automatic object space reconstruction. Second, the data streams can support algorithmic research for driverless vehicle technologies, including object avoidance, navigation/positioning, detecting pedestrians and bicyclists, etc. Crucial cross-performance analyses on map database resolution and accuracy with respect to sensor performance metrics to achieve economic solution for accurate driverless vehicle positioning can be derived. These, in turn, could provide essential information on optimizing the choice of geospatial map databases and sensors’ quality to support driverless vehicle technologies. The paper reviews the data acquisition and primary data processing challenges and performance results. |
---|---|
ISSN: | 2194-9050 2194-9042 2194-9050 |
DOI: | 10.5194/isprs-annals-IV-2-161-2018 |