Simulation of Groundwater-Level Behavior in Southeast Region of Korea Induced by 2016 Gyeong-Ju Earthquake Using 2D Hydro-Mechanical Coupled Bonded Particle Modeling

This study examines the hydrogeological response to the 12 September 2016 Gyeong-Ju earthquake (ML 5.8) in the southeastern region of the Korean Peninsula. Using 2D hydro-mechanical coupled bonded particle modeling, we simulated the dynamic fault rupture process to analyze stress redistribution and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied sciences 2024-12, Vol.14 (24), p.11939
Hauptverfasser: Cho, Hyunjin, Hamm, Se-Yeong, Yoon, Jeoung Seok, Kim, Soo-Gin, Cheong, Jae-Yeol
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This study examines the hydrogeological response to the 12 September 2016 Gyeong-Ju earthquake (ML 5.8) in the southeastern region of the Korean Peninsula. Using 2D hydro-mechanical coupled bonded particle modeling, we simulated the dynamic fault rupture process to analyze stress redistribution and its impact on pore pressure and groundwater levels (GWLs). The results indicated that compressional areas correlated strongly with pore pressure increases and GWL rises, while extensional areas showed decreases in both. Observations from the groundwater monitoring Well 5 at Gyeong-Ju San-Nae and Well 8 at Gyeong-Ju Cheon-Buk, located approximately 15 km from the earthquake’s epicenter, aligned well with the model’s predictions and interpretation, providing validation for the simulation. These findings highlight the capability of hydro-mechanical models to capture fault-induced hydrological responses and offer valuable insights into the interplay between seismic activity and groundwater systems.
ISSN:2076-3417
2076-3417
DOI:10.3390/app142411939