In Silico Comparative Exploration of Allergens of Periplaneta americana , Blattella germanica and Phoenix dactylifera for the Diagnosis of Patients Suffering from IgE-Mediated Allergic Respiratory Diseases
The burden of allergic illnesses is continuously rising, and patient diagnosis is a significant problem because of how intricately hereditary and environmental variables interact. The past three to four decades have seen an outbreak of allergies in high-income countries. According to reports on the...
Gespeichert in:
Veröffentlicht in: | Molecules (Basel, Switzerland) Switzerland), 2022-12, Vol.27 (24), p.8740 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The burden of allergic illnesses is continuously rising, and patient diagnosis is a significant problem because of how intricately hereditary and environmental variables interact. The past three to four decades have seen an outbreak of allergies in high-income countries. According to reports on the illness, asthma affects around 300 million individuals worldwide. Identifying clinically important allergens for the accurate classification of IgE-mediated allergy respiratory disease diagnosis would be beneficial for implementing standardized allergen-associated therapy. Therefore, the current study includes an in silico analysis to identify potential IgE-mediated allergens in date palms and cockroaches. Such an immunoinformatic approach aids the prioritization of allergens with probable involvement in IgE-mediated allergic respiratory diseases. Immunoglobulin E (IgE) was used for molecular dynamic simulations, antigen-antibody docking analyses, epitope identifications, and characterizations. The potential of these allergens (Per a7, Per a 1.0102, and Bla g 1.0101) in IgE-mediated allergic respiratory diseases was explored through the evaluation of physicochemical characteristics, interaction observations, docking, and molecular dynamics simulations for drug and vaccine development. |
---|---|
ISSN: | 1420-3049 1420-3049 |
DOI: | 10.3390/molecules27248740 |