On the Distribution of Zeros and Poles of Rational Approximants on Intervals

The distribution of zeros and poles of best rational approximants is well understood for the functions f(x)=|x|α, α>0. If f∈C[−1,1] is not holomorphic on [−1,1], the distribution of the zeros of best rational approximants is governed by the equilibrium measure of [−1,1] under the additional assum...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Abstract and Applied Analysis 2012-01, Vol.2012 (2012), p.1628-1648-793
Hauptverfasser: Andrievskii, V. V., Blatt, H.-P., Kovacheva, R. K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The distribution of zeros and poles of best rational approximants is well understood for the functions f(x)=|x|α, α>0. If f∈C[−1,1] is not holomorphic on [−1,1], the distribution of the zeros of best rational approximants is governed by the equilibrium measure of [−1,1] under the additional assumption that the rational approximants are restricted to a bounded degree of the denominator. This phenomenon was discovered first for polynomial approximation. In this paper, we investigate the asymptotic distribution of zeros, respectively, a-values, and poles of best real rational approximants of degree at most n to a function f∈C[−1,1] that is real-valued, but not holomorphic on [−1,1]. Generalizations to the lower half of the Walsh table are indicated.
ISSN:1085-3375
1687-0409
DOI:10.1155/2012/961209