Free-standing Reduced Graphene Oxide/carbon Nanotube Paper for Flexible Sodium-ion Battery Applications

We propose a flexible, binder-free and free-standing carbonaceous paper fabricated via electrostatic spray deposition using reduced graphene oxide/carbon nanotube (rGO/CNT) as a promising electrode material for flexible sodium-ion batteries (NIBs). The as-prepared rGO/CNT paper exhibits a three-dime...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecules (Basel, Switzerland) Switzerland), 2020-02, Vol.25 (4), p.1014
Hauptverfasser: Hao, Yong, Wang, Chunlei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We propose a flexible, binder-free and free-standing carbonaceous paper fabricated via electrostatic spray deposition using reduced graphene oxide/carbon nanotube (rGO/CNT) as a promising electrode material for flexible sodium-ion batteries (NIBs). The as-prepared rGO/CNT paper exhibits a three-dimensional (3D) layered structure by employing rGO as conductive frameworks to provide sodium-storage active sites and CNT as spacer to increase rGO interlayer distance and benefit the diffusion kinetics of sodium ions. Consequently, the rGO/CNT paper delivers an enhanced sodium ion storage capacity of 166.8 mAh g at 50 mA g , retaining an average capacity of 101.4 mAh g when current density sets back 100 mA g after cycling at various current rates. An average capacity of 50 mAh g at 200 mA g was stabilized when cycling up to 300 cycles. The well-maintained electrochemical performance of free-standing rGO/CNT paper is due to the well-established hybrid 3D nanostructures, which demonstrates our carbon based material fabricated by a facile approach can be applied as one of the high-performance and low-cost electrode materials for applications in flexible energy storage devices.
ISSN:1420-3049
1420-3049
DOI:10.3390/molecules25041014