Changes and Remodeling of Intersegmental Interferences following Bilateral Sagittal Split Ramus Osteotomy in Patients with Mandibular Prognathism

Purpose: This study aimed to measure the amount of change in the mandibular angle, intergonial width, and ramus angulation due to intersegmental interference and changes in condyle position after mandibular bilateral sagittal split ramus osteotomy (BSSRO) in patients with mandibular prognathism and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied sciences 2022-02, Vol.12 (4), p.1892
Hauptverfasser: Jeon, Min-A, Sándor, George K., Ko, Edward Chengchuan, Kim, Yong-Deok
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Purpose: This study aimed to measure the amount of change in the mandibular angle, intergonial width, and ramus angulation due to intersegmental interference and changes in condyle position after mandibular bilateral sagittal split ramus osteotomy (BSSRO) in patients with mandibular prognathism and to evaluate the correlation between them. Materials and Methods: A total of 32 patients who underwent mandibular setback using the BSSRO of the mandible to manage skeletal prognathism during the years 2018 to 2020 at the Department of Oral and Maxillofacial Surgery, Pusan National University were followed both clinically and with cone beam computed tomography (CBCT) for at least one year. Those who were also treated with genioplasty or other orthognathic surgery were excluded from the study. The mandibular angle (gonial angle: Ar–Go–Me), intergonial width (Go–Go), and total angle (sum of left and right proximal segmental angle) were recorded. Changes in the ramus were compared and analyzed before surgery (T1), immediately after surgery (T2), and one year following surgery (T3). Results: The mandibular angle increased by an average of 0.14 degrees immediately after surgery (T2–T1) and increased by 0.97 degrees at 12 months postoperatively (T3–T2). No correlation was observed with the amount of change in each group relative to the amount of mandibular setback. The mandibular width decreased by 0.01 mm on average immediately after surgery (T2–T1), and by 4.2 mm on average at 12 months after surgery (T3–T2). The angle of the mesial fragment of the mandible increased by 1.04 degrees immediately after surgery (T2–T1), compared to the preoperative state. It decreased by 0.86 degrees at 12 months postoperatively (T3–T2). Conclusion: The increase in the mandibular angle from immediately after surgery to 12 months after BSSRO reflects the counterclockwise rotational tendency to prevent opening restriction when intentionally selecting the condylar position. The decrease in the intergonial width immediately after surgery is thought to be due to the effect of internal trimming to minimize the bone interference between the outer surface of the distal bone fragment and the inner surface of the mesial fragment, and the decrease 1 year after surgery can be considered to be due to bone remodeling. Interosseous interference during mandibular setback osteotomy does not necessarily cause an increase in the width of the mandibular angle after surgery.
ISSN:2076-3417
2076-3417
DOI:10.3390/app12041892