BMO Functions Generated by AXℝn Weights on Ball Banach Function Spaces
Let X be a ball Banach function space on ℝn. We introduce the class of weights AXℝn. Assuming that the Hardy-Littlewood maximal function M is bounded on X and X′, we obtain that BMOℝn=αlnω:α≥0,ω∈AXℝn. As a consequence, we have BMOℝn=αlnω:α≥0,ω∈ALp·ℝnℝn, where Lp·ℝn is the variable exponent Lebesgue...
Gespeichert in:
Veröffentlicht in: | Journal of function spaces 2021, Vol.2021 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let X be a ball Banach function space on ℝn. We introduce the class of weights AXℝn. Assuming that the Hardy-Littlewood maximal function M is bounded on X and X′, we obtain that BMOℝn=αlnω:α≥0,ω∈AXℝn. As a consequence, we have BMOℝn=αlnω:α≥0,ω∈ALp·ℝnℝn, where Lp·ℝn is the variable exponent Lebesgue space. As an application, if a linear operator T is bounded on the weighted ball Banach function space Xω for any ω∈AXℝn, then the commutator b,T is bounded on X with b∈BMOℝn. |
---|---|
ISSN: | 2314-8896 2314-8888 |
DOI: | 10.1155/2021/6626787 |