BMO Functions Generated by AXℝn Weights on Ball Banach Function Spaces

Let X be a ball Banach function space on ℝn. We introduce the class of weights AXℝn. Assuming that the Hardy-Littlewood maximal function M is bounded on X and X′, we obtain that BMOℝn=αlnω:α≥0,ω∈AXℝn. As a consequence, we have BMOℝn=αlnω:α≥0,ω∈ALp·ℝnℝn, where Lp·ℝn is the variable exponent Lebesgue...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of function spaces 2021, Vol.2021
Hauptverfasser: Wu, Ruimin, Wang, Songbai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let X be a ball Banach function space on ℝn. We introduce the class of weights AXℝn. Assuming that the Hardy-Littlewood maximal function M is bounded on X and X′, we obtain that BMOℝn=αlnω:α≥0,ω∈AXℝn. As a consequence, we have BMOℝn=αlnω:α≥0,ω∈ALp·ℝnℝn, where Lp·ℝn is the variable exponent Lebesgue space. As an application, if a linear operator T is bounded on the weighted ball Banach function space Xω for any ω∈AXℝn, then the commutator b,T is bounded on X with b∈BMOℝn.
ISSN:2314-8896
2314-8888
DOI:10.1155/2021/6626787