SRF material research using muon spin rotation and beta-detected nuclear magnetic resonance

Muon spins precess in transverse magnetic fields and emit a positron preferentially in the spin direction at the instant of decay, enabling muon spin rotation ( μ SR) as a precise probe of local magnetic fields in matter. μ SR has been used to characterize superconducting radio-frequency (SRF) mater...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Frontiers in Electronic Materials 2024-02, Vol.4
Hauptverfasser: Junginger, Tobias, Laxdal, Robert, MacFarlane, W. A., Suter, Andreas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Muon spins precess in transverse magnetic fields and emit a positron preferentially in the spin direction at the instant of decay, enabling muon spin rotation ( μ SR) as a precise probe of local magnetic fields in matter. μ SR has been used to characterize superconducting radio-frequency (SRF) materials since 2010. At TRIUMF, a beam of 4.2 MeV μ + is implanted at a material-dependent depth of approximately 150  μ m. A dedicated spectrometer was developed to measure the field of first vortex penetration and pinning strength in SRF materials in parallel magnetic fields of up to 300 mT. A low-energy beam available at PSI implants μ + at variable depth in the London layer allowing for direct measurements of the London penetration depth from which other material parameters relevant for SRF applications, such as the lower critical field and the superheating field, can be calculated. Beta-detected nuclear magnetic resonance ( β -NMR) is a technique similar to low-energy μ SR using beams of low-energy β radioactive ions. With a recent upgrade, it is capable of detecting the penetration of parallel magnetic vortices, depth resolved with nanometer resolution at applied fields of up to 200 mT. In this paper, we review the impact and capabilities of these techniques for SRF research.
ISSN:2673-9895
2673-9895
DOI:10.3389/femat.2024.1346235