Robust point cloud registration for map-based autonomous robot navigation
Autonomous navigation in large-scale and complex environments in the absence of a GPS signal is a fundamental challenge encountered in a variety of applications. Since 3-D scans provide inherent robustness to ambient illumination changes and the type of the surface texture, we present Point Cloud Ma...
Gespeichert in:
Veröffentlicht in: | EURASIP journal on advances in signal processing 2024-12, Vol.2024 (1), p.57-25, Article 57 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Autonomous navigation in large-scale and complex environments in the absence of a GPS signal is a fundamental challenge encountered in a variety of applications. Since 3-D scans provide inherent robustness to ambient illumination changes and the type of the surface texture, we present Point Cloud Map-based Navigation (PCMN), a robust robot navigation system, based exclusively on 3-D point cloud registration between an acquired observation and a stored reference map. It provides a drift-free navigation solution, equipped with a failed registration detection capability. The backbone of the navigation system is a robust point cloud registration method, of the acquired observation to the stored reference map. The proposed registration algorithm follows a hypotheses generation and evaluation paradigm, where multiple statistically independent hypotheses are generated from local neighborhoods of putative matching points. Then, hypotheses are evaluated using a multiple consensus analysis that integrates evaluation of the point cloud feature correlation and a consensus test on the Special Euclidean Group SE(3) based on independent hypothesized estimates. The proposed PCMN is shown to achieve significantly better performance than state-of-the-art methods, both in terms of place recognition recall and localization accuracy, achieving submesh resolution accuracy, both for indoor and outdoor settings. |
---|---|
ISSN: | 1687-6180 1687-6172 1687-6180 |
DOI: | 10.1186/s13634-024-01153-z |